Looking For Anything Specific?

Class 9th Math Important questions

Find below the important questions for CBSE Class 9 Mathematics Annual Exam 2019:

.

Some sample questions from the set of Important 1 Mark Questions for CBSE Class 9 Mathematics Exam, are given below:

Q.  If (1, −2) is a solution of the equation 2x – p, then find the value of p.

Sol.

2− y = p

Putting x = 1, y = −2, in above equation, we get:

            2(1) – (−2) = p

⟹       p = 4

Q. If the graph of equation 2x + ky = 10k, intersect x-axis at point (2, 0) then find value of k.

Sol.

Here,   2x + ky = 10k               ...(i)

At point (2, 0), equation (i) becomes:

            2(2) + k(0) = 10k

⟹       4 = 10k

⟹       k = 10/4 = 0.4

Q. Find the radius of largest sphere that is carved out of the cube of side 8 cm.

Sol.

The largest sphere can be carved out from a cube, if we take diameter of the sphere equal to edge of the cube.

∴ Diameter of the sphere = 8 cm

Thus, radius of the sphere = 8/2 = 4 cm
.

Some sample questions from the set of Important 2 Marks Questions for CBSE Class 9 Mathematics Exam, are given below:

Q.  Find the total surface area of a cube, whose volume is 3√3a3 cubic units.

Sol.

Since volume of a cube = 3√3a3
⟹          (side)= 3√3a3 
⟹          (side)= √3 × √3 × √3 × a3

⟹          (side)= (√3a)3
⟹                side= √3a
Now, total surface area of cube =6 (side)
                                                              = 6(√3a)2

                                                              = 18a2sq. units

Q. If two opposite angles of a parallelogram are (63 − 3x)° and (4x − 7)°. Find all the angles of the parallelogram.

Sol.

In a parallelogram, the opposite angles are equal.

∴             (63 − 3x)° = (4x − 7)°

⟹          4x + 3x = 63 +7

⟹          7x = 70

⟹             x = 10

                (63 − 3x)° = 33°

                (4x − 7)° = 33°

Now, sum of all interior angles of a parallelogram = 360°

∴ Sum of the other two opposite angles = 360° − (33° + 33°) = 360° − 66° = 294°

∴ Each of the other two opposite angles = 294/2 = 147°

Hence the four angles of a parallelogram are 33°, 147°, 33°, 147°

Some sample questions from the set of Important 3 Marks Questions for CBSE Class 9 Mathematics Exam, are given below:

Q. Suman spins two spinners, one of which is labeled 1, 2 and 3 and the other are labeled A, B, C and D. Find the probability of:

(i) Stopping at 2 and C.

(ii) Stopping at 3 and either B or D

(iii) Stopping at any number and A

Sol.

Sample space = {A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3}

Total possible outcome = 12

Probability of stopping at 2 and C = 1/12

Probability of stopping at 3 and either B or D = 2/12 = 1/6

Probability of stopping at any number and A = 3/12 = 1/4

Q. Construct an angle of 135o at the initial point of a given ray and justify the construction.

Sol.

Steps of construction:   

1.  Draw a ray OA. 

2. With its initial point O as centre and any radius, draw an arc BE, cutting OA and its produced part at C and E respectively. 

3. With centre B and same radius (as in step 2), draw  an arc, cutting  the arc BE at C. 

4. With C as centre and the same radius, draw an arc cutting the arc BE at D. 

5. With C and D as centres, and any convenient radius (more than 1/2 CD), draw two arcs intersecting at P.

6. Join OP.

Then ∠AOP = ∠EOP = 90o 

7. Draw OQ as the bisector of ∠EOP.
Then, ∠AOQ =135o

 

Justification : 
By construction ∠AOP = 90o 

Thus, ∠AOP = ∠EOP = 90o  

Also, OQ is drawn as the bisector of ∠EOP

Therefore, ∠POQ =1/2∠EOP =1/2 × 90o = 45o

Thus, ∠AOQ = ∠AOP + ∠POQ = 90o + 45o = 135o

Hence justified.

Some sample questions from the set of Important 4 Marks Questions for CBSE Class 9 Mathematics Exam, are given below:

Q. Q. If a + b + c = 6 and ab + bc + ca = 11, find the value of a+b+c− 3abc.

Sol.

(a + b + c)2 = ab2 +c2 +2(ab bc ca
(6)= ab2 +c2 + 2 × 11
ab2 +c2 = 36 – 22 = 14 
a+b+c− 3abc = ( a + b + c)[ ab2 +c2 −(ab bc ca)] 
                              = 6 × (14 − 11)

                              = 6 × 3 = 18

Q. The polynomials ax3 – 3x2 +4 and 2x– 5x +a when divided by (x – 2) leave the remainders pand q respectively. If p – 2q = 4, find the value of a.

Sol.

Let, f(x) = ax3 – 3x2 +4

And g(x) = 2x– 5x +a

When f(x) and g(x) are divided by (x – 2) the remainders are p and q respectively.

⟹       f(2) = and g(2) = q

⟹       f(2) = × 23 – 3 × 22 + 4

⟹            p = 8a – 12 + 4

⟹            p = 8a – 8               ....(i)

And     g(2)= 2 × 23 – 5 × 2 + a

⟹            q = 16 – 10 + a

⟹            q = 6 + a                 ....(ii)

But       p – 2q = 4                   (Given)

⟹       8a – 8 – 2(6 + a) = 4   (Using equations (i) and (ii))

⟹       8a – 8 – 12 − 2a = 4

⟹       6a – 20 = 4     

⟹       6a = 24 

⟹         a = 24/6

⟹         a = 4

Q. Construct a ΔABC in which BC = 3.8 cm, ∠B = 45oand AB + AC = 6.8cm.

Sol.

Steps of Construction 
1. Draw BC = 38 cm. 
2. Draw a ray BX making an ∠CBX = 45°. 
3. From BX, cut off line segment BD equal to AB + BC i.e., 6.8 cm.

4. Join CD. 
5. Draw the perpendicular bisector of CD meeting BD at A. 
6. Join CA to obtain the required

Justification:

Clearly, A lies on the perpendicular bisector of CD. 
∴                      AC = AD 
Now,               BD = 6.8 cm 
⟹         BA + AD = 6.8 cm 
⟹         AB + AC = 6.8 cm 
Hence, is the required triangle.

                                                                                        Sol. a + b + c)2 = ab2 +c2 +2(ab bc ca

(6)= ab2 +c2 + 2 × 11
ab2 +c2 = 36 – 22 = 14 
a+b+c− 3abc =( a + b + c)[ ab2 +c2−(ab bc ca)] 
                         = 6 × (14 − 11)

                         = 6 × 3 = 18


Post a Comment

0 Comments